A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks

نویسندگان

  • Tianbao Yang
  • Yun Chi
  • Shenghuo Zhu
  • Yihong Gong
  • Rong Jin
چکیده

Although a large body of work are devoted to finding communities in static social networks, only a few studies examined the dynamics of communities in evolving social networks. In this paper, we propose a dynamic stochastic block model for finding communities and their evolutions in a dynamic social network. The proposed model captures the evolution of communities by explicitly modeling the transition of community memberships for individual nodes in the network. Unlike many existing approaches for modeling social networks that estimate parameters by their most likely values (i.e., point estimation), in this study, we employ a Bayesian treatment for parameter estimation that computes the posterior distributions for all the unknown parameters. This Bayesian treatment allows us to capture the uncertainty in parameter values and therefore is more robust to data noise than point estimation. In addition, an efficient algorithm is developed for Bayesian inference to handle large sparse social networks. Extensive experimental studies based on both synthetic data and real-life data demonstrate that our model achieves higher accuracy and reveals more insights in the data than several state-of-theart algorithms. keywords: Social Network, Community, Community Evolution, Dynamic Stochastic Block Model, Bayesian Inference, Gibbs Sampling

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Overlapping Community Detection in Dynamic Networks

Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, fin...

متن کامل

تشخیص اجتماعات ترکیبی در شبکه‌های اجتماعی

One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...

متن کامل

Revealing evolutions in dynamical networks

The description of large temporal graphs requires effective methods giving an appropriate mesoscopic partition. Many approaches exist today to detect “communities”, ie groups of nodes that are densely connected (Fortunato, 2010), in static graphs. However, many networks are intrinsically dynamical, and need a dynamic mesoscale description, as interpreting them as static networks would cause...

متن کامل

Community Dynamics: Event and Role Analysis in Social Network Analysis

Social networks are analyzed and mined to find communities, or groupings of interrelated entities. Community mining provides this higher level of structure and offers greater understanding, but networks change over time. Their constituent communities change, and the elements of those communities change over time as well. By performing event analysis, the evolutions of communities are abstracted...

متن کامل

finding influential individual in Social Network graphs using CSCS algorithm and shapley value in game theory

In recent years, the social networks analysis gains great deal of attention. Social networks have various applications in different areas namely predicting disease epidemic, search engines and viral advertisements. A key property of social networks is that interpersonal relationships can influence the decisions that they make. Finding the most influential nodes is important in social networks b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009